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Abstract

Code obfuscation poses a significant challenge in cybersecurity, preventing reverse engineering
and the effective analysis of malware. Sophisticated obfuscation tools are becoming increasingly
accessible, but current deobfuscation tools remain manual and tedious to use. The few automatic
deobfuscators available are often limited to one transformation, whereas in real-life contexts,
multiple transformations are used. Given their versatility and efficiency, recent studies have
concluded that Large Language Models (LLMs) are a promising approach to deobfuscation
tasks. Novel agentic approaches can further enhance their potential, by helping LLMs leverage
compilation tools such as Ghidra analysis and control decision-making.

In this work, we propose ALFREDO, an Agentic LLM-Based Framework for Code
Deobfuscation. We implement a multiclass classifier and deobfuscation through LLMs, using an
iterative process and tooling with agentic Al. Experiments on two datasets of Tigress-obfuscated
C programs prove this framework an accurate and promising method for code deobfuscation,
achieving a success rate of 77.9%. We demonstrate the versatility of LLMs in code
deobfuscation, able to handle four different transformations without being constrained to just one
like traditional deobfuscators.

With a framework designed for agentic systems, we lay the groundwork for equipping LLMs
with more sophisticated tools, improving the effectiveness of LLM-based deobfuscation.

1 INTRODUCTION

1.1  Background

Malware employs a variety of obfuscation techniques to evade identification or analysis, making
deobfuscation a significant challenge in cybersecurity. Deobfuscation refers to the process of
removing obfuscation — a way of purposefully concealing or distorting parts of code to make the
program difficult to detect, tamper with, or reverse engineer. It is important to note however, that
obfuscation is essential in safeguarding important software against attackers in the same way that
malicious actors use obfuscation to obscure malicious code and make it difficult to understand.
In this aspect, obfuscation is a double edged sword, and deobfuscation tools, in the wrong hands,
can potentially be used for malicious purposes.

Deobfuscation can be done either manually through the use of tools such as Miasm [16] and
Ghidra [17], or computationally, such as through semantic analysis and machine learning.
Manual deobfuscation is tedious and requires a lot of manual work - analysts have to perform a



multitude of static and dynamic analysis techniques. On the other hand, machine learning has
been on the rise due to its ability to process vast amounts of data and replicate or even surpass
human results in a shorter time. Moreover, due to its versatility, it can be applied to a vast
number of practical situations. In particular, machine learning techniques for deobfuscation have
gained popularity due to their potential in automating the tedious process and their ability to be
trained toward a specific deobfuscation task or procedure.

1.2  Motivations of research

Large Language Models (LLMs) have gained immense popularity in recent years thanks to their
versatility and potential for automation. Given LLMs’ remarkable ability to generate, interpret
and summarise code, they have shown promise for software engineering tasks [18], including
malware analysis and deobfuscation tasks. LLMs can analyse large amounts of data from
cybersecurity news articles, blogs, forums, and research papers to identify various obfuscation
patterns and understand how to deobfuscate them. In their work, Pataskis et al. assess LLMs in
malicious code deobfuscation from real-world malware campaigns [1]. They found that while
traditional LLMs are not yet robust enough to fully replace traditional deobfuscators, they can
efficiently complement them whenever they fail, and have the potential to be used independently
in the future.

Traditional LLMs have faced criticism for their tendency to generate unreliable and inaccurate
information, making them unpreferred for more technical tasks [2]. However, the emerging use
of agentic LLM systems have shown promising countermeasures by allowing LLMs to exercise
control over decision-making and leverage tools such as decompilers, as well as dissect and
organise tasks. We hypothesise that with the help of agentic frameworks, LLMs can demonstrate
potential in tackling code deobfuscation problems and pose a viable alternative to methodical
deobfuscators.

In short, we contribute:
e ALFREDO, a framework for applying agentic LLMs in code deobfuscation problems.



2 METHODOLOGY
2.1  Framework design
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Fig 2.0 ALFREDO framework pipeline.

Agentic Al system. We implement an agentic Al system with LangGraph [13], defining three
core steps: the multiclass classifier, deobfuscator, and scorer. Memory is maintained across
steps, and tools such as Ghidra’s Headless Analyzer aid the model in the deobfuscation process.
The agentic system is extensible, allowing for the future addition of more sophisticated tools.

Multiclass classifier approach. The multiclass classifier tasks the Llama 3 model to identify a
possible obfuscating transformation applied to the given code, with the aim of giving a clear
direction for the deobfuscator. The classifier chooses from 4 named transformations (Flattening,
AddOpaque, EncodeBranches, Virtualization) and produces a structured label which is passed
along with the obfuscated code and system prompt to subsequent steps.

Deobfuscator. The obfuscating transformation, obfuscated code, and system prompt are then
provided to a second instance of the Llama 3 model for the deobfuscation task. Given the often
complex and deliberately convoluted nature of obfuscated code, we selected a model temperature
of 0.4 to produce focused results while introducing a degree of randomness, encouraging the
model to explore alternative solutions to deobfuscation problems over repetitive, inaccurate
answers. Prompts were engineered and selected for highest model compliance to the instructions.

{code}. This code has undergone {Flattening/AddOpaque/EncodeBranches/Virtualization}
transformation. Your job is to deobfuscate this code. It should have the same functionality and
semantics, but be deobfuscated. Only provide C code. Do not explain, and no additional notes,
comments, or sentences. Do not add . Your entire answer must be code, with no explanation.
Your deobfuscated answer should compile without any errors.




Fig 2.1  Final prompt provided to Llama 3 model for the deobfuscation task

Iterative process. We observed that code generated by the model frequently produced
compilation errors, rendering code ineffective. We improve model performance significantly by
implementing an iterative process, wherein if generated code is not successfully compiled with
GNU compiler, we repeat the process from the classifier step. We further supplement the model
with decompiled versions of the obfuscated program, obtained by the agentic system through
Headless Analysis, as we found that LLMs benefit from having pseudocode as a structured
guide. [14] Additionally, even with obfuscated elements, decompiled pseudo C represents the
code’s original control flow with greater clarity and structure, improving deobfuscation accuracy.
Should the compilation still fail after 4 iterative attempts, we abort the process, calculate the
F-measure, and move on to the next file.

2.2 Experimental Setup

LLM model. We opt to evaluate our approach primarily using Meta Llama 3 70B [3] due to
resource constraints. Meta Llama 3 70B performed comparable to GPT-3.5 and GPT-4.0. While
its accuracy is lacking in multiple areas, the model is open-source and applicable to fine-tuning.

Dataset. Our curated dataset originates from the POJ-104 dataset [4] containing 32,000 solutions
for 62 programming problems. We removed all files that failed to compile and obfuscated the
remaining using the Tigress obfuscator [5] by applying four different transformations: Flattening,
Virtualize, AddOpaque, and EncodeBranches, resulting in four obfuscated variants of each
program alongside the original program with no obfuscations applied. We removed the programs
that failed to be obfuscated for any of the four transformations and obtained 29,998 programs per
transformation type, amounting to 119,992 obfuscated programs. We also used the Obfuscation
Benchmarks dataset [11] with 99 flattened C programs for comparison with other deobfuscators.

Dataset Flatten Virtualize = AddOpaque Encode Branches Total
POJ-104 29998 29998 29998 29998 119992
Obfuscation

Benchmarks » ) ) i 9

Table 2.2  Datasets used to evaluate ALFREDQO.

Benchmarking. Among the obfuscating transformations chosen, there is a limited amount of
existing work. EncodeBranches is a relatively unexplored obfuscation, while only one
commercial tool, Binary Ninja [6], exists for automatic deobfuscation of the AddOpaque
transformation. Currently, there are also no reliable automatic tools for deobfuscating
Virtualization-protected code [7]. Most well-researched is control flow flattening (CFF), with
several state-of-the-art tools available for automatic deobfuscation of flattened code such as
MODeflattener [8], deflat [9], and CaDeCFF, whose source code is not publicly available. [10]
Given these findings, we benchmarked our model’s deobfuscation abilities against the two CFF
deobfuscators, MODeflattener and deflat.

Evaluation metrics. We use codeBERTscore to calculate F-measure, a widely-used metric based
on the harmonic mean of precision and recall, derived from token-level semantic comparisons



between the original C code and code generated by the deobfuscators. The score is a numerical
value between 0 and 1, with higher values indicating higher semantic equivalence [12].

3 RESULTS

To evaluate various aspects of ALFREDO as a framework, we devised three research questions.
RQ1: How accurate is ALFREDO in recovering the original deobfuscated C code?

RQ2: How does specific obfuscating transformation applied affect ALFREDO’s effectiveness?
RQ3: How does the multiclass classifier contribute to ALFREDO’s deobfuscation ability?

In addition to results, we discuss the implications of our findings in Section 5.

3.1 RQI1: Model Performance

From testing ALFREDO on 1,500 obfuscated files in the modified POJ-104 dataset, we obtained
an average F-measure of 0.77, indicating high semantic equivalence of the generated
deobfuscated code to the original source code. A similar F-measure for ALFREDO was obtained
when testing on the benchmark dataset, used to compare performance with MODeflattener and
deflat. Because MODeflattener and deflat fail to generate deobfuscated code for programs in the
POJ-104 dataset obfuscated with AddOpaque, EncodeBranches and Virtualization, we
represented their F-measure as —.

MODeflattener deflat ALFREDO

Average Flattening 0.93 0.95 0.80
F-measure

AddOpaque — — 0.78

EncodeBranches - - 0.84

Virtualization — — 0.66

Overall - - 0.77
Typical runtime (seconds) 0.09 3.43 9.42 ~52.8

Table 4.0  F-measure and runtime comparisons between the deobfuscators.

Although ALFREDO’s accuracy already fulfills a high standard, it falls short of methodical
deobfuscators like MODeflattener and deflat, which employ fixed techniques for analysis to
produce highly accurate deobfuscations. ALFREDO also averages a longer typical runtime: the
runtime for a deobfuscation attempt completed successfully on the first instance is 9.42 seconds
on average, while maximum runtime for deobfuscating a program was 125.62 seconds, which
typically indicated repeated failures in compilation of generated code. ALFREDQ’s runtime can
largely be attributed to the nature of LangGraph as well as the iterative process necessitated by
the nature of code generated by LLMs.

3.2 RQ2: Impact of specific obfuscating transformations

Obfuscating transformations vary in complexity, presenting differing degrees of challenge to
deobfuscate. We determine if this distinction similarly applies to an LLM-based approach by
comparing the deobfuscation success rates of ALFREDO for various transformations. In Table



4.0, Virtualization-protected code was most difficult to deobfuscate, with the lowest F-measure
of 0.66, whereas deobfuscation accuracy for Flattening, AddOpaque, and EncodeBranches were
all significantly higher, with F-measures within the range of 0.77 to 0.84. These findings align
with existing knowledge that Virtualization is challenging to deobfuscate even by manual
approaches. [15]

3.3 RQ3: Classifier effectiveness

Finally, we consider the effectiveness of the multiclass classifier. The rate of correct
classifications was 29.01%. When testing ALFREDO with the absence of the multiclass
classifier, we found that the average F-measure remained the same at 0.77, showing no apparent
decline in performance. We hypothesise that other techniques such as Support Vector Machines
and Random Forest are preferable to LLMs for classifying obfuscating transformations, and can
increase the F-measure if integrated into the framework.

4 CONCLUSION

4.1 Discussion of results

Although ALFREDO’s performance is lower than methodical deobfuscators like MODeflattener
and deflat, we demonstrate how it is able to generate deobfuscated code reliably, with a high
average semantic equivalence of 77.9% to the original. Additionally, ALFREDO is able to
deobfuscate various transformations, while existing tools for automatic deobfuscation typically
only support one transformation type, such as CFF. Lastly, due to its versatility, ALFREDO can
be an intermediate solution where there is a lack of methodical deobfuscators in the first place.

However, ALFREDO’s performance deteriorates for more challenging obfuscations like
Virtualization. This suggests limitations to an LLM-based framework’s capacity to deobfuscate
code. Hence, we suggest ALFREDO to be supplemented with additional analysis tools such as
control flow graphs or symbolic execution to fully realise its potential in code deobfuscation
contexts.

4.2 Implications and future work

Societal impact. We believe that ALFREDO could be a viable tool for malware analysis and
general analysis of obfuscated programs, able to deobfuscate code of a large range of
transformations. Due to their rigid analysis methods, traditional deobfuscators may perform
poorly in real-world contexts, where malware is often obfuscated with more than one
transformation and deliberately designed to hinder methodical deobfuscation.

LLM-based frameworks like ALFREDO can mitigate this due to their ability to adapt and
analyse obfuscated code. Additionally, agentic systems allow support with strategic analysis
tools like taint analysis, maximising technical competence while retaining a flexible, creative
decision-making approach. Finally, our work also demonstrates the strong potential of agentic
LLM applications in an entirely new field, being to the best of our knowledge, the first existing
work to investigate the usage of agentic LLMs in code deobfuscation and achieving a high
accuracy rate of 77.9%.



Future work. Future research could test the integration of more sophisticated analysis tools with
agentic LLM-based frameworks like ALFREDO. Given the diversity of such tools, it is
important to determine which can be successfully combined with LLM capabilities to improve
the accuracy and efficiency of deobfuscation. Exploring other machine learning techniques for
the classifier and fine tuning the deobfuscator for specific transformations can further improve
ALFREDQ'’s performance as well. The effect of layering multiple obfuscating transformations
on LLM deobfuscation ability was also outside the scope of this work, but could be an
interesting area for future research, and simulate obfuscation in more realistic contexts.
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APPENDIX

Appendix A

An example illustrating transformations to code

(1) Original sample of C code in POJ-104 dataset, depicting a standard program to find the
length of the Longest Increasing Subsequence (LIS). Labelled as 10_57.c, with 28 lines of code.

void main()
{
int a[50]={0},flag[50],max, i, j,count=1,st=0;
int num;
scanf("%d", &um) ;
for (i=0;i<num;i++)
{
scanf("%d",&a[i]);
flag[il=1;
}
for (i=0;i<num;i++)
{
for(j=0;j<i;j ++)
{
if(aljl>=ali])
{

}

flag[i]=flag[jl+1>flag[i]?flag[j]l+1:flag[i];

}
max = flag[0];
for (i=1;i<num;i++)
{
if (flag[i]>max)
max=flag[i];
}

printf("%d\n",max);

(i1) Obfuscated C code, depicting the same program but with the Encode Branches
transformation applied. Labelled as 10_57_InitBranchFuns.c, with 2,058 lines of code.

struct _IO_codecvt ;

struct _IO_FILE ;

struct _IO_marker ;

struct _IO_wide_data ;

union __anonunion_pthread_rwlockattr_t_145707745 ;

struct anonstruct mbstate_t_996288157 ;




struct drand48_data ;
struct __anonstruct wseq32_961093918 ;
union __anonunion_pthread_rwlock_t_656928968 ;
union __anonunion____missing_field_name_744779506 ;
struct __anonstruct fsid_t_109580352 ;
enum __anonenum_idtype_t_558242672 ;
struct __pthread_mutex_s ;
struct __pthread_rwlock_arch_t ;

char *__builtin_strchr(char * , int ) ; */
typedef unsigned long __u_quad_t;

struct anonstruct___g1_start32_961693919 ;

typedef unsigned int __u_int;
typedef __u_int u_int;
typedef unsigned int __mode_t;

extern int putchar_unlocked(int __c ) ;
int __builtin_ctz(unsigned int ) ; */
extern __attribute__((__nothrow__)) long ( __attribute__((__leaf__))
mrand48) (void) ;
typedef unsigned long __ino_t;
typedef __ino_t ino_t;
float __builtin_acosf(float ) ; */
typedef struct _IO_FILE FILE;
extern int putc(int __c , FILE *__stream ) ;
typedef long __blksize_t;
typedef __blksize_t blksize_t;
int __builtin_strcmp(char const *  char const * ) */
double __builtin_sinh(double ) ; */
typedef int __daddr_t;
typedef __daddr_t daddr_t;
typedef unsigned long size_t;
extern size_t fread_unlocked(void * __restrict __ptr , size_t
size_t n .,

__Size ,
FILE * __restrict __stream ) ;
float __builtin_fabsf(float ) ; */
typedef unsigned long __fsfilcnt_t;
typedef __fsfilent_t fsfilcnt_t;
extern __attribute__((__nothrow__)) char *( __attribute__((__leaf__))
ctermid) (char *__s ) ;
float __builtin_fmodf(float ) ; */

void __builtin_va_arg(__builtin_va_list , unsigned long , void * ) ;
*/
extern int fputs(char const * __restrict __s , FILE * __restrict
__stream ) ;

extern __attribute__((__nothrow__)) void ( __attribute__((__leaf__))
funlockfile) (FILE *__stream ) ;

typedef unsigned long __nlink_t;

typedef __nlink_t nlink_t;




(ii1) C code, deobfuscated with ALFREDO to resemble 10_57.c, with 29 lines of code. The
obfuscated code from (ii) was provided to ALFREDO, and the deobfuscated code shown below
was returned as output, with an F-measure of 0.90 when compared to the original C code in (i).

int main() {
int a[N] = {8}, num, i, j;
int flag[N] = {@};
int max;
scanf("%d", &num);
for (i = 0; i < num; i++) {
scanf("%d", &a[il);
flag[i] = 1;
}
for (1 =0; 1 < num; i++) {
for (j = 0; j <1; j++) {
if (alj] >= a[i]) {
if (flag[j] + 1 > flag[i])
flag[i] = flag[j] + 1;
else
flag[i] = flag[il];
}
}
}
max = flag[0];
for (i = 1; i < num; i++) {
if (flag[i] > max)
max = flag[i];
}
printf("%d\n", max);
return 9;




