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BACKGROUND AND PURPOSE OF RESEARCH AREA 

 

Around 20 SAF soldiers fall prey to heat injuries every year (Ong, 2014), despite strict 

prevention measures such as water parades and constant monitoring of weather conditions. 

Heatstroke, being one of the fatal types of heat injury, occurs when core body temperature is 

higher than 40
o
C with a possibility of organ damage and death if the body is not rapidly 

cooled (Binkley, 2002). It would be beneficial to have a model to predict human core 

temperature for preventing heat injuries in soldiers engaging in strenuous physical activity; 

however, human core temperature cannot be obtained easily through non-invasive means 

such as measuring peripheral skin temperature. Previous research include a simple linear 

regression model of core temperature from skin temperature (Richmond, 2013) and a Kalman 

filter time-series (Buller, 2010). This research aims to address this problem by developing a 

regression model of core body temperature from skin temperature and heart rate, both of 

which can be measured quantitatively.  

 

HYPOTHESIS OF THE RESEARCH 

 

This project aims to develop a regression model in predicting core temperature given other 

contemporaneous variables (skin temperature, heart rate). 

 

RESEARCH METHOD AND MATERIALS 

 

Experimental data (denoted as subset B) was obtained from 2 labs which conducted 4 

separate experiments on 34 unique subjects, comprising their core temperature (TCore), skin 

temperature (TSkin) and heart rate (HR) at 5 minute intervals. Non-experimental data (denoted 

as subset A) comprising age, weight, height, Body Mass Index (BMI) and Body Surface Area 

(BSA), of which the latter 2 are metrics of body health, was also provided. Both experimental 

data and non-experimental data were to form the training set, holdout (validation set) and test 

set with 4311, 944 and 932 points respectively. Both subsets underwent a Box-Cox 

transformation: 
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Where   is the original predictor,    is the transformed predictor and   is the optimised 

parameter indicating the power that all predictor points are raised to, such that the dataset is 

closer to normality. Skewness in the data is hence minimised, as seen in Figure 1 for the case 

of HR, where the small increase in density (indicated) is resolved after transformation. 

 

Next, the data was centred and scaled to adjust the variables to zero mean with a common 

standard deviation of one. Principal Component Analysis was then performed on each subset 

to find linear combinations of the predictors (PCs) that carried the greatest possible variance. 
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These PCs were ranked in descending order based on the percentage of variation captured, 

and were surrogate predictors in determining a smaller set of predictors that could capture 

most information from the original data.   

 

 
 

Figure 1: Density plot for Box-Cox transformation of heart rate 

 

After using PCA to determine if any predictors could be removed or combined linearly to 

reduce the feature size, the following models were considered based on 10-fold cross 

validation repeated 5 times to reduce bias: 

 

1. Regression 

a. Linear regression 

b. Partial least squares (PLS) 

c. Stepwise 

d. Multivariate adaptive regression splines (MARS) 

2. Trees 

a. Classification and regression trees (CART) 

b. Conditional inference trees 

c. Cubist 

3. Regularisation 

a. Elastic nets 

b. Least angle regression (LARS) 

c. Least absolute shrinkage and selection operator (LASSO) 

4. Neural network 

5. Support vector machines (SVM) 

 

The 12 models were evaluated based on 2 performance metrics: root-mean-square-error 

(RMSE) and the coefficient of determination (R
2
). For further comparison based on the 

holdout data, selected models then underwent iterative model diagnostics for further 

comparison through residual analysis. The formula for residuals is as follows: 

 

 ̂      ̂ 
 

Where  ̂ is the residual of a point,   is the actual value of TCore in the holdout set and  ̂ is the 

predicted value of TCore based on the model used. Adopting a residual approach to analysis 

provided a well-rounded evaluation of a model’s accuracy.   

 

Next, the models were ensembled with the aim of increasing the performance accuracies. 3 

types of ensemble models were considered: greedy selection to include the best performing 
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single models with weights, stacking to include a variety of models with unique high-

performing aspects, and averaging to weigh the predictions of each model equally. Based on 

the test set, their performance was evaluated against the best 4 single models (Figure 4) by 

the following loss functions: mean absolute error (MAE) for absolute accuracy loss, mean 

square error (MSE) for penalising large residuals, maximal information coefficient (MIC) for 

correlation, and maximum asymmetry score (MAS) for deviation from monotonicity. 

 

INTERPRETATION OF DATA, RESULTS AND FINDINGS 

 

Preliminary analysis showed that experiment subjects were aged 19 – 24, weighed 52 – 89 

kg, stood 1.61 – 1.81 metres tall, had a BSA range of 1.60 – 2.12 m
2 

and a BMI range of 18.1 

– 28.2. From Figure 2, most participants were relatively healthy (BMI 18.5 – 25) apart from a 

few outliers. Although the number of test subjects was not large (35), since the model will not 

be based on a time-series i.e. number of unique points not limited by test subjects’ individual 

characteristics, the data can be modelled after a normal distribution, with 6187 unique points 

overall. Hence, while a regression model based on this dataset can be robust due to a smaller 

outlier effect, its accuracy level may vary when predicting TCore for a much older person.  

 

 
Figure 2: Scatterplots of the predictors in subsets A and B versus TCore 

 

PCA was conducted on the non-experimental predictors in subset A. The largest percentage 

of the original variability was summarised by PC1 (51.9%) and the smallest by PC5 

(0.000290%), which shows that PC5 only accounts for an insignificant amount of variance, 

PC1 accounts for a slight majority of information in the original data. It would then be 

reasonable to remove the predictors comprising the majority of PC5 i.e. height and BSA, 

which occupy greater weight in PC5 as seen in the last column of Table 1, which presents the 

coefficients of each predictor for individual PCs (rotations) and obtained through the 

decomposition of the original data matrix. However, these 2 predictors also carried 

significant component weights in PC2 and PC1 respectively, which comparatively were more 

representative of the data than PC5. Hence, all 5 predictors in subset A were kept. 

 

Table 1: Individual component weights of predictors in subset A 

Predictors 
Rotation Matrix 

PC1 PC2 PC3 PC4 PC5 

Age 0.3425612 -0.2761554 -0.89767318 -0.02382014 
-

0.002331995 

Weight 0.5829495 0.2496947 0.12536343 0.75130692 0.132832001 

Height 0.2894910 -0.6477958 0.31266295 -0.16907290 0.608450320 
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Predictors 
Rotation Matrix 

PC1 PC2 PC3 PC4 PC5 

BMI 0.3236982 0.6526855 -0.06423423 -0.53265745 0.425876941 

BSA 0.5951774 -0.1255110 0.27673581 -0.35022979 
-

0.656328622 

 

PCA analysis conducted on subset B revealed that the 2 measured predictors, TSkin and HR, 

were correlated. Figure 3 compares the original relationship between TSkin and HR, to that of 

Principal Component 1 and Principal Component 2, which has undergone a rotational 

transformation about the axis of greatest variance. Although this seems to show that TSkin and 

HR used in conjunction measure redundant information and that either predictor or a linear 

combination of both could replace the original 2 predictors in the model, changes in HR due 

to the body’s physical activity is known to result in a response in TSkin through the human 

biological system (Cuddy, 2013) so a correlation was expected; since Principal Component 1 

accounted for less than 80% of the original variance, neither predictor was removed.  

 

 
Figure 3: PCA analysis of subset B 

 

The 12 models evaluated based on the training set were evaluated based on 2 performance 

metrics: root-mean-square-error (RMSE) and the coefficient of determination (R
2
). Figure 4 

shows the resampling results from across the models, and each of the 50 coloured lines 

correspond to a common cross-validation. The R
2
 value for the LARS and LASSO models 

are not depicted because they were too large (> 10) and it is evident from the RMSE plot that 

these models perform poorly overall, while similar greedy models such as stepwise 

regression also underperformed. This could be due to the increase in bias when these models 

chose the best set of predictors and considered a larger number of possible models. 

Conversely, the best performing models (lowest RMSE values and highest R
2
 values) are the 

neural network with 0.1 weight decay and 25 hidden units and Cubist. This could be due to 

the neural network’s optimised ability to detect complex non-linear relationships between 

predictors while the Cubist model referenced a point’s nearest neighbours, as well as previous 

alternating responses for further accuracy. 
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Figure 4: Parallel-coordinate plots denoting performance of models in training set  

 

The 2 best performing single models, neural network and Cubist, both gave similar results 

when tested on the holdout set. From Figure 5, both models exhibited slight heteroscedascity 

(non-constant variance) in their residual-fitted plots, as the points are not distributed evenly. 

However, they satisfy the normal distribution as seen by the linearity of the points on both Q-

Q plots, used to compare different quantiles of the same dataset. 

 

 
Figure 5: Diagnostics of Neural Network and Cubist models in holdout set 

 

Hence, ensemble models were formed from all single models, excluding LARS and LASSO, 

and compared against selected best performing singles in the holdout set. Previously 

underperforming models such as PLS were included in ensemble selection, as their high 

variance would be reduced in the ensemble models, including these models might be more 

advantageous. 

 

From Table 2, when loss functions are used as performance metrics, the best performing 

model is the MARS single model. Although the greedy and stacking ensemble models did not 

perform too poorly, they still fell short of expectations considering these ensembles selected 
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the best performing single models in the training set to reduce variance and to compensate for 

individual flaws. The neural network model underperformed, perhaps due to poor choice of 

initial parameters and overfitting in the training set. The averaged ensemble model performed 

poorly, as expected, as predictions from weaker models were afforded equal weights as better 

performing ones. 

 

Table 2: Performance of models in test set (best results for each metric is bolded) 

Model 
Performance under loss function performance metrics 

MAE MSE MIC MAS 

Ensemble 

Greedy 0.4469769 0.3033217 0.1890026 0.08656168 

Stacking 0.4034881 0.2400181 0.2302064 0.08007806 

Averaged  2.831272 16.17399 0.1646979 0.09865735 

Best 

single 

models 

NN 1.229479 1.981659 0.1750661 0.06430988 

SVM 0.3881179 0.2295136 0.2673186 0.1140114 

Cubist 0.4021212 0.2497234 0.2018318 0.0595927 

MARS 0.3427453 0.1917000 0.2102119 0.04886933 

 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK 

 

The best performing model in the test set was the MARS model. It is important to note that 

due to real-life issues such as potential health implications from delayed predictions, the final 

model needs to provide a balance between accuracy and speed. The best performing model 

may not be the optimal model due to its computational time and complexity. In this case, 

however, while the stacking ensemble also performed well overall, when exposed to a larger 

dataset it might prove unfeasible due to the increased quantity of levels to combine data. As a 

single model, MARS would be preferable for implementation.  

 

Alternatively, predictors could have also been subjected to a spatial transformation which 

would combine and transform all pre-existing predictors to bring in outliers, resulting in 

greater normality in the data before carrying out model fitting despite greater difficulty faced 

afterwards in removing redundant predictor variables, this could be compared to Box-Cox in 

evaluating model performance afterwards. PCA analysis also revealed that weight was the 

most important non-experimental predictor in predicting TCore; this could be due to the 

correlation between one’s body weight and basal metabolic rate, which in turn affects 

metabolic reactions that produce excess heat during exercise. 

 

In the future, experiments involving heat injuries can be conducted with a classifier for risk of 

heat stress. This would not only open up the realm of classification models to be trained, but 

also support the time component as an interval predictor in the model. Models would then 

reference the duration of physical activity performed and determine thresholds, dependent on 

how long the activity had taken place, where subjects would be subsequently more at risk of 

heat injury based on their non-experimental data e.g. BSA. If the physical experiments were 

able to replicate real-life scenarios, it would be possible for the model to hypothetically 

determine if one would be at risk of heat injury when undergoing the activity. 
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